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Abstract— A fast and low-power embedded classifier with
small footprint is essential for real-time applications such as
brain-machine interfaces (BMIs) and closed-loop neuromod-
ulation for neurological disorders. In most applications with
large datasets of unstructured data, such as images, deep
neural networks (DNNs) achieve a remarkable classification
accuracy. However, DNN models impose a high computational
cost during inference, and are not necessarily ideal for problems
with limited training sets. The computationally intensive nature
of deep models may also degrade the classification latency,
that is critical for real-time closed-loop applications. Among
other methods, ensembles of decision trees (DTs) have recently
been very successful in neural data classification tasks. DTs
can be designed to successively process a limited number
of features during inference, and thus impose much lower
computational and memory overhead. Here, we compare the
hardware complexity of DNNs and gradient boosted DTs for
classification of real-time electrophysiological data in epilepsy.
QOur analysis shows that the strict energy-area-latency trade-
off can be relaxed using an ensemble of DTs, and they can be
significantly more efficient than alternative DNN models, while
achieving better classification accuracy in real-time neural data
classification tasks.

I. INTRODUCTION

Today, machine learning (ML) techniques can be used
to interpret complex and noisy sensor data in a variety of
applications such as medical devices, wearables, and internet
of things (IoT). To enable fast and energy-efficient classifi-
cation of neural data in real-time applications such as motor
decoding for BMI [1] or seizure detection for epilepsy [2],
the application-specific integrated circuit (ASIC) implemen-
tation of ML algorithms is required. Furthermore, embedded
learning at the edge and near the sensors is preferred over the
cloud, due to latency or privacy concerns as well as limited
communication bandwidth.

Different architectures of DNNs such as convolutional
neural networks (CNNs) and recurrent neural networks
(RNNS5) have recently been used for neural data classification
tasks such as epileptic seizure detection and movement
intention decoding [1], [3]. For example, a 5-layer CNN
followed by a logistic regressor was used to detect interictal
epileptiform discharges from intracranial EEG recordings
in [4]. An 8-layer CNN classifier was used to detect the ictal,
pre-ictal, and interical periods from scalp EEG following
wavelet transform in [5]. To partially relax the large storage
requirements of CNNs, an integer CNN architecture for
detection of epileptic seizures from scalp or intracranial
EEG was proposed in [6]. However, DNN models can be

The authors are with the School of Electrical and Computer Engineering,
Cornell University, Ithaca, NY. Email: (mt795, shoaran)@cornell.edu.

978-1-5386-7921-0/19/$31.00 ©2019 |IEEE

computationally demanding during inference, and require
extensive hardware resources and large amounts of memory
to store many parameters on chip. Moreover, the compu-
tationally intensive nature of DNNs may also degrade the
detection latency, that is critical for real-time and closed-loop
applications such as responsive stimulation and prosthetic
arm control. Support vector machine (SVM) is an alternative
classification model that has been used in biomedical system-
on-chips (SoCs). However, the size of feature vector in
SVM, and consequently, the number of multiplications and
additions required for classification linearly increase with
number of input channels. Moreover, for cases with a highly
nonlinear separation boundary, the use of nonlinear kernels
can further increase the hardware complexity of SVM.

Recently, prediction models based on gradient boosting
technique [7],[8] have achieved an unprecedented accuracy
in ML competitions on Kaggle, such as classification of
intracranial EEG data for epilepsy [9]. A combination of
gradient boosting (XGBoost) and neural networks was the
winning solution to the grasp-and-lift EEG detection contest
on Kaggle. This technique employs gradient-based opti-
mization and boosting to form an accurate classification
model, by adaptively combining simple weak predictors,
typically decision trees. Tree-based classifiers with simple
comparators as their processing units are inherently more
hardware-friendly compared to DNNs and SVMs [10]. For
instance, a 32-channel embedded gradient-boosting classifier
for epileptic seizure detection achieved 27x improvement
in energy-area-latency product compared to state-of-the-art
SVM models [2], [11]. In contrast to DTs, other classification
models extract all required features from every input channel,
or directly process raw data with intensive computations,
which may increase the hardware and memory overhead.

In our previous work [2], [11], we showed the superiority
of gradient boosted trees over linear/non-linear SVM and
LLS classifiers with a low-power microchip implementation.
In this work, we specifically compare the computational
complexity and energy-area requirements of neural networks
and DT ensembles for neural data classification in real-
time applications such as seizure detection. The complexity
analysis and results are however applicable to other domains
and similar classification tasks.

II. COMPUTATIONAL COMPLEXITY ANALYSIS

The complexity of a classifier during inference is defined
by the number of computational resources and computa-
tions required to classify the input data. The memory and
hardware requirements can be mathematically formulated by
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the number of parameters and multiply-accumulate (MAC)
operations required to compute the classification model. In
the following, we discuss the computational cost of DNN
and DT ensemble models.

A. Deep Neural Networks

With multiple stacked layers for feature extraction and
transformation, DNNs can model complex and non-linear
relationships in data. Convolutional neural network (CNN)
is a popular class of deep learning models with translation
invariance characteristics, that can extract spatiotemporal
features from raw input [12]. The hidden layers in a CNN
typically consist of convolutional (CONV), fully connected
(FC), and pooling layers [12]. The pooling layers are used
to downsample the spatial dimensions of the input, and do
not require any parameters to be learned. The computational
complexity of pooling layer depends on the type of pooling
function (e.g., average or max pooling). A pooling layer
of size u x v downsamples the input feature maps by a
factor of uv. In an FC layer, all neurons at the current layer
are connected to all neurons of the previous layer. For a
neuron with label i at the FC layer [ which receives outputs
o from neurons in the preceding layer, the propagation
function is defined by n; = f(Zjl:ml(l*l)wijoj), in which
f is the activation function (e.g., Sigmoid or ReLU), o;
denotes the output from neuron j at layer / — 1, and the
weight parameters are shown by w;;. Therefore, a total of
dim(l — 1) MAC operations and parameters are required for
each neuron at layer /. Thus, the total number of parameters
and MAC operations for the FC layer [ would be equal to
dim(l—1) x dim(l).

The CONV layers can extract spatial features from the
input, as well as temporal features from time series data. In
CONYV layers, a group of kernels (filters) are applied to the
input, while passing the result to the next layer. Such layers
may also provide downsampling (depending on the stride
size of the layer) [12]. Let’s assume a group of g kernels of
size u X v are applied to f feature maps of dimension m X n,
as shown in Fig. 1(a). Here, p,, and p, are the amount of
zero-padding on the borders of input feature maps, while
filters are applied with a stride of s. The dimensions of the
output feature map in the m and n directions can be written
as om = (m—u+2py)/s+1 and 0, = (n—v+2p,)/s+1,
respectively, as shown in Fig. 1(b). To reduce the number of
parameters required for a CONV layer, a parameter sharing
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Fig. 1: (a) A group of g kernels with a size of uxv and depth of f are
applied to f input feature maps of size mxn; (b) sliding of filters on input
data.
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TABLE I: Computational complexity of CNN layers and DT ensemble.

Convolutional Neural network DT ensemble

FC layer CONV layer
MAC count | dim(l—1) xdim(l) SXUXVXEX 0y X0, kX I x (1+2) x Ng*
without sharing:
1 - . . (FXuxv+1)xgXomXoy, |
Parameters dim(l— 1) x dim(l) with sharing: kx(2'=1)x3+T
(fxuxv+1)xg

* Two extra additions are required for classification and thresholding.

scheme has been proposed, in which the neurons of each
output feature map share the same weights and bias for
filtering the inputs. Thus, the total number of weights and
bias values with and without sharing can be written as:

(fxuxv+1l)xg
(fxuxv+l)xgxoyxo, (1)

with sharing :

without sharing :

To calculate the input to the activation function for each
element in the output feature maps, fx u x v MAC operations
are required. Thus, the total number of MACs required to
calculate the output of a CONV layer with a group of g
filters is given by:

fXUXvXxgxonXo, 2)

B. Decision Tree Ensembles

Decision trees are obtained by recursively partitioning the
data space based on a sequence of queries, in the form of
comparison to a threshold. For a trained model, successive
comparisons are then performed on input features during
inference, that start at the root node and terminate in a
leaf node. To improve the classification performance, various
ensemble methods such as gradient boosting and random
forest have been widely used. In gradient boosting, multiple
trees are built in a greedy fashion to minimize a regularized
objective on the training loss, while the output of classifier
is defined by a weighted additive combination of individual
trees [2]. Given the sequential process of decision making
in a tree, only a subset of nodes (along the path from root
to the leaf) will be visited during the top-down flow. As a
result, a DT would only require the extraction of a limited
number of features for classification of input data [2].

In the case of epileptic seizure detection, the input fea-
ture vector consists of spectral power features from input
channels. Therefore, for comparison at each node of a tree,
the channel and feature number, and corresponding threshold
value need to be determined. As a result, in a k-size ensemble
of trees with a depth of / (i.e., 2l 1 nodes), the total number
of parameters required for inference is equal to:

kx(2'—1)x3 3)

In addition, a total of T coefficient parameters for FIR
filters in non-overlapping bands is required, that is stored and

shared among trees, as shown in the hardware architecture
of Fig. 2(b).

The maximum number of MAC operations per classifica-
tion in a decision tree is for the case when all the active
queries are on spectral power features, as the most computa-
tionally intensive attribute. Therefore, assuming that feature
extraction is done with #-tap FIR filters followed by an energy
extractor, the maximum number of MAC operations required
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for feature extraction in a k-size ensemble of trees with a
depth of [ can be written as k x [ X (t +2) X Ny, where N
is the number of samples used for feature extraction at each
node. This can be physically implemented with a serial filter
architecture employing a single MAC unit per tree. Finally,
a summation of the leaf values is required to calculate the
output decision of the ensemble, followed by thresholding.
The summary of the computational cost for CNN and DT
ensembles is shown in Table I.

III. HARDWARE AND PERFORMANCE COMPARISON

A high classification accuracy, low latency, small footprint,
and power efficiency are the key requirements for an on-
chip neural data classifier. For seizure detection, the gradient
boosted DT ensemble in [2] achieved an AUC of 92%,
outperforming the CNN classifiers studied here [4]-[6], with
an average detection latency of 1.1s. The classifier in [5]
captures the interictal to preictal transition approximately 9-
10 minutes prior to seizure onset. The latency was not re-
ported for the remainder of classifiers studied here. However,
given that each method is verified on a different dataset, the
comparison of classification performance may not be fair.

In the following, we analyze the energy efficiency and
required hardware resources to implement the CNN and DT
classifiers in an integrated neural interface. In this analysis,
the number of parameters and MAC operations (normalized
to sampling frequency) are calculated based on the discus-
sions and equations derived in Section II. A summary of
hardware and performance metrics for these classifiers is
provided in Table II. A detailed quantitative comparison in
terms of energy efficiency and footprint would require the
details of hardware implementation. However, except [2], the
other methods have not been implemented in hardware.

A. Energy Efficiency

The energy consumption of classifiers can be categorized
into computation and data movement energy. The compu-
tational energy accounts for the required energy to perform
multiply-accumulation, comparison, as well and other mathe-
matical operations during inference. Data movement energy
is associated with various types of memory access during
inference, such as storing partial sums in CONV layers or
reading the weight and bias values from memory. In CNN,
data movement is commonly more energy consuming than
computation [13].

The massively interconnected structure of neural networks
would require a large number of MAC operations during
inference. A number of techniques such as pruning [14] and
data reuse [13] have been recently proposed to relax the
computational requirements of CNNs. Although the energy
estimation based on the analysis in Section II would not
reflect the potential gain that can be achieved by pruning
and data reuse, the computational requirements of CNNs
is generally significantly higher than DT ensembles. For
example, the authors in [6] estimate the computational energy
of a 4-bit integer CNN model for seizure detection based on
the energy consumption of multiplications and additions as
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Fig. 2: (a) A spatial architecture for CNN accelerator proposed in [13].
Spad: Scratch pad (local memory space in PEs), Ifmap: Input feature map,
Psum: Partial sum. (b) Hardware architecture for the DT ensemble in [2].
Filter coefficients are shared among trees, while each tree has a dedicated
memory to store its parameters. R;: leaf value at the end of Tree 1 execution.

34-90 pJ/class (in a 45nm process, 0.9V). Although their
proposed 4-bit Integer-Net enables 10x reduction in energy
consumption compared to a conventional 32-bit floating
point implementation, it is still significantly more energy
consuming compared to the DT ensemble model proposed
in [2]. It is worth mentioning that the energy requirements
for FFT transform applied to the time series neural data that
generates the input to the CNN is not included in the reported
computational efficiency.

On the other hand, the large number of MAC operations
in CNNs would require significant data movement between
computational units and the on-chip or off-chip memories.
As a result, there have been extensive efforts to design DNN
accelerators [13] and specialized computational platforms,
like Google’s TPU. To minimize the energy consumption
for data movement in CNNs, a spatial architecture with
four levels of memory hierarchy was proposed in [13],
Fig. 2(a). This proposed scheme for data flow reduces the
energy consumption of CONV layers by 1.4-2.5x compared
to conventional data flows. For the gradient boosted DT

TABLE II: Comparison of Performance and Hardware Metrics

Parameter [ TNSRE'IS [4] | TBME'18 [5] [ JETCAS'I8 [6]F | JETCAS'IS 2]
Classifier CNN CNN CNN XGB
Design parameters 5-layer 8-layer S-layer 8-trees, depth of 4
AUC (# of patients) 90% (18) 86.6% (22)% 85.1% (12) 92% (26)
Singal Modality iEEG scalp EEG scalp EEG iEEG

Task IED detection§ ictal/pre-i interictal izure/non-seizure izure/non-seizur
# of Parameters{ 1980 / 420k 1590 / 125k 8960 / 41.2k 512

# of MACs** 28.4k / 2.1k 181k / 489 N.A. 7047
Memory N.A. N.A. 26.2 kB <1 kB
Chip Area N.A. N.A. N.A. 1 mm®
Energy Efficiency N.A. N.A. 34-90 pJ 41.2n)

* 4-bit integer tested on iEEG from 4 dogs and 8 patients
** normalized to sampling frequency. §lnterictal epileptiform discharges
1 performance reported on CHB-MIT dataset
T reported numbers for CNN models follow the (CONV/FC) format
F1 number of MACs required for feature extraction
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ensemble in Fig. 2(b) [2], however, the data movement is
significantly lower. In this DT architecture, the only param-
eters to be retrieved from memory include the input channel
number to be processed, threshold value for comparison,
feature number, and filter coefficients, with no need for
intermediate memory access from on-chip memory during
feature extraction or classification. As a result, a state-of-
the-art energy efficiency of 41.2 nJ/class was achieved in SoC
measurements [2].

B. Hardware Utilization and Storage Requirements

As discussed earlier, deep neural networks require spe-
cialized hardware platforms for energy efficient computation
of MAC operations. Such a platform would process CNNs
in a layer by layer fashion. Based on the size and shape
of the layer (i.e., CONV or FC), a portion of the on-chip
resources would be reused to compute the MAC operations
in a sequence. In [13], the computation mapping of the
processing element (PE) array for each layer is found by
maximizing the data reuse in the form of convolutional,
filter, and input feature map reuse. The total core area of
this accelerator with 168 PEs and 108kB of global buffer is
12.25 mm?. Moreover, a large off-chip DRAM and a bulky
on-chip buffer is required for energy efficient computations
and storage of classifier parameters in DNNs, as opposed to
minimal storage requirements of DT ensembles. While the
network quantization technique proposed in [6] saves 7.2—
7.6 in storage requirements compared to the 32-bit floating
point, it still needs 26.2x more storage compared to the
DT ensemble in [2]. This 8-tree ensemble requires less than
1kB of register-type memory (690b dedicated per tree and
228B shared), with no need for off-chip memory. Figure 3
further confirms the large number of parameters required
for DNN classifiers compared to DT ensembles, based on
the equations derived in Section II. The accurate estimation
of hardware resources and chip area would depend on the
customized hardware architecture for each model, which is
not available for the cited references that use DNN models.

Furthermore, the hardware architecture in Fig. 2(b) pro-
cesses the top-down flow of a tree in a sequential way,
through reusing a universal feature extraction engine. This
architecture allows significant reduction in the overall chip
area and power consumption. Therefore, the energy and area
trade-off is relaxed. As discussed in [2], the hardware com-
plexity of this architecture would not scale with number of
input channels, and can therefore serve as a compact and low-
power solution for multichannel neural data classification.
During feature extraction at each node of a tree, the small
number of MAC operations in FIR filters would allow the
implementation of a filter with a fully serial architecture,
without penalizing the detection latency. As a result, the
footprint can be further reduced by implementing one MAC
per feature extraction unit.

To further improve the area and energy efficiency of the
DT ensemble, a reduced bit-precision for parameters and
efficient MAC implementation in filters, such as distributed
arithmetic or memristive-based multiplication can be em-

Number of MAC operations Number of parameters

181.4k 421.9k

a0sk I 126.5k ﬂ
. 36.9k

704° 512
=] ] lﬂ

S-layer CNN B-layer CNN DT ensemble, 8 S-layer CNN E-layer CNN S-layer CNN DT ensemble, 8
14] [5] trees depth 4 [2] [4] [51 [&] trees depth 4 [2]
Fig. 3: Comparison of number of parameters and MAC operations required
for CNN and DT classifiers, *assuming that all visited nodes in a tree extract
features from 1s windows of input.

ployed, that remains as future work.
I'V. CONCLUSIONS

In this work, we compared the hardware complexity of
DNN and DT ensembles for neural data classification. Our
study shows that DNNs are computationally demanding, and
require large number of parameters and MAC operations
for inference. Therefore, such classifiers do not meet the
stringent power and area requirements for applications such
as implantables or wearables. Prior work [2], [11] have pro-
posed hardware friendly architectures for DTs that substan-
tially relaxes the energy-area trade-off, while outperforming
the deep learning methods in accuracy. Our analysis further
confirms that ensembles of DTs can serve as an attractive
solution for embedded neural data classification.
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