Compact Low-Power Cortical Recording Architecture for Compressive Multichannel Data Acquisition

Mahsa Shoaran, Student Member, IEEE, Mahdad Hosseini Kamal, Student Member, IEEE, Claudio Pollo, Pierre Vanderheynst, and Alexandre Schmid, Member, IEEE

Abstract—This paper introduces an area- and power-efficient approach for compressive recording of cortical signals used in an implantable system prior to transmission. Recent research on compressive sensing has shown promising results for sub-Nyquist sampling of sparse biological signals. Still, any large-scale implementation of this technique faces critical issues caused by the increased hardware intensity. The cost of implementing compressive sensing in a multichannel system in terms of area usage can be significantly higher than a conventional data acquisition system without compression. To tackle this issue, a new multichannel compressive sensing scheme which exploits the spatial sparsity of the signals recorded from the electrodes of the sensor array is proposed. The analysis shows that using this method, the power efficiency is preserved to a great extent while the area overhead is significantly reduced resulting in an improved power-area product. The proposed circuit architecture is implemented in a UMC 0.18 μm CMOS technology. Extensive performance analysis and design optimization has been done resulting in a low-noise, compact and power-efficient implementation. The results of simulations and subsequent reconstructions show the possibility of recovering fourfold compressed intracranial EEG signals with an SNR as high as 21.8 dB, while consuming 10.5 μW of power within an effective area of 250 μm × 250 μm per channel.

Index Terms—Compressive sensing, cortical signals, multichannel recording, reconstruction.

I. INTRODUCTION

WIRELESS monitoring of brain activity through implantable devices is a promising technology enabling advanced and cost-effective diagnosis and treatment of brain disorders such as stroke, Parkinson’s disease, depression and epilepsy [1]–[3]. Recording from multiple sites, however, introduces a major technological bottleneck as the large bandwidth requirement for data telemetry which is not easily achievable by state-of-the-art wireless technology. The increased power consumption of transmission for large recording arrays can cause major safety and biocompatibility concerns regarding the applicability of such devices. Thus, some type of data reduction prior to telemetry is needed to meet the requirements of an implantable device.

Compressive sensing (CS) [4], [5] is an emerging compression method with interesting advantages over traditional methods thanks to its low encoder complexity and universality with respect to the signal model. A compressive sensing system samples a high-dimensional signal into a smaller number of linear measurements than dictated by the Nyquist sampling theorem. CS has been recently studied in the context of biological signals (e.g., ECG [6], [7], EEG [8] and iEEG [9]) to tackle the data rate issue. When compared to thresholding and activity-dependent recording, CS has the advantage of preserving the temporal information and morphology of the signal for the entire recording period. It is also possible to apply CS along with other methods (such as interpacket redundancy removal, Huffman coding [6] or dynamic power management of the front-end LNA) in order to further relax the stringent energy and bandwidth requirements of implantable system.

While the majority of research presented in literature focuses on power minimization of the implantable system, there is also a stringent need to minimize the circuit area in order to include the highest number of recording units into the available die area. Large-scale recording of cortical activity is particularly important in the case of diseases like epilepsy which spread over wide regions of cortical area. The state-of-the-art research targeting such applications progresses toward minimally invasive flexible and dense recording arrays with high-resolution recording capability of intracranial EEG (iEEG) signals [10]–[12]. The high resolution (i.e., small spacing of recording sites) provides the capability of capturing higher frequency activity than traditionally recordable by large widely-spaced electrodes, giving a profound insight into the fundamental mechanisms underlying such abnormalities. Electrocorticotographic signals recorded from human cortex can be used as an alternative to invasive spike recordings through penetrating electrodes, in order to control prosthetic limbs in BMIs as shown in [13].

The common microelectronic approach to CS ([8], [14], [15]) consists of on-the-fly compression of consecutive samples of each recording unit over time, either in analog [Fig. 1(a)] or digital [Fig. 1(b)] domain. Even though this approach results in a significant energy efficiency, its large area usage disqualifies the concept for a multichannel recording interface which should include the circuits supporting many channels in a limited die area. To overcome this issue, a new multichannel measurement scheme [Fig. 1(c)] along with an appropriate recovery scheme...
are proposed, which encode the whole array to a single compressed data stream. In the proposed approach, the compression is carried out in the analog domain, and in a multichannel fashion. This technique circumvents the need to place one ADC per channel and results in a significant area saving. Based on this approach, a wireless monitoring system consisting of several recording/compressing units is proposed (Fig. 2). Taking benefit of the area-efficient implementation of CS, the number of recording units implantable on the cortex which satisfy the energy constraints of the system is scaled up by a factor equal to the compression ratio.

This paper is organized as follows. Section II presents a background on CS and describes the multichannel acquisition model. The circuit-level implementation of the proposed method is discussed in Section III. Experimental results of the proposed architecture are presented in Section IV and Section V concludes the paper.

II. THEORETICAL MODEL

Compressive sensing exploits the known structures in the signals to lower the required sampling ratio below the Nyquist rate, while providing a signal recovery of acceptable quality [17]. The basic concepts of CS are provided in the following discussion, emphasizing the benefit of applying CS in a neural recorder array. A detailed explanation of CS can be found in [4], [5], [18].

A. Compressive Sampling

Compressive signal acquisition prescribes sampling a signal \(x \in \mathbb{R}^d \) with a significantly smaller number of samples than the signal sampled at the Nyquist rate. The linear measurements \(y \in \mathbb{R}^m \), \(m \ll d \) are formed by computational projection of the signal onto the measurement matrix \(\Phi \in \mathbb{R}^{m \times d} \). Compressive measurements over a defined time interval are obtained by

\[
y = \Phi x.
\]

The corresponding block diagram is shown in Fig. 1(a) and (b). The acquisition system is under-determined, i.e., the number of solutions for \(x \) is infinite. However, when the signal \(x \) is known to be sparse in a basis \(\Psi \in \mathbb{R}^{d \times d} \) in which \(x = \Psi \alpha \) can be sparsely represented, the sparsest representation of \(x \) is the solution to the problem. A signal is said to be sparse in a basis if it can be represented by \(S \) non-zero coefficients, i.e., \(S \ll d \).

To ensure a successful recovery of \(x \), the linear map \(\Phi \) should satisfy the Restricted Isometry Property (RIP) [19]. The measurement matrix satisfies the RIP for an \(S \)-sparse signal \(x \) if and only if \(S \ll d \). Sampling matrices with elements generated independently and according to a subgaussian distribution, such as the independent and identically distributed (i.i.d) Gaussian or the Bernoulli/Rademacher distributions (random 0 and 1), satisfy the RIP.

B. Multichannel Acquisition Model

In the case of multichannel neural recording, measurement limitations such as die area and power consumption suggest the use of a multichannel compression technique rather than acquiring each channel separately. Therefore, it is important to consider a measurement scheme which fulfills the physical constraints of the system. Let \(X \in \mathbb{R}^{d \times N} \) represent the multichannel EEG signal where \(d \) is the dimension of the signal in each channel and \(N \) is the number of channels. We define a reshaping operator \(P : \mathbb{R}^{d \times N} \rightarrow \mathbb{R}^{dN} \) which transposes the input matrix and vectorizes the resulting matrix by concatenating its columns after each other. The linear compressive measurements are obtained by acquiring \(M = p/d \) measurements from columns of \(X \), i.e., \(M \) measurement at each time-sample from all channels, where \(p \ll d \times N \) is the total number of measurements. Hence, the multichannel linear map can be represented in matrix form \(\Phi_{MC} \in \mathbb{R}^{(Md) \times (dN)} \) as follows:

\[
\Phi_{MC} = \begin{bmatrix}
\Phi_1 & 0 & \cdots & 0 \\
0 & \Phi_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \Phi_d
\end{bmatrix}
\]

\[
\Phi_1 = \begin{bmatrix}
\phi_1^{1,1} & \cdots & \phi_1^{1,N} \\
\vdots & \ddots & \vdots \\
\phi_d^{1,1} & \cdots & \phi_d^{1,N} \\
\phi_1^{M,1} & \cdots & \phi_1^{M,N}
\end{bmatrix}
\]
where $\Phi_i \in \mathbb{R}^{M \times N}$ and $\phi_i^{k,l}$ is uniformly selected from $\{0, 1\}$ to approximate a measurement matrix similar to the Bernoulli matrix. The multichannel measurement vector $Y \in \mathbb{R}^p$ is defined as

$$Y = \Phi_{MC} \mathcal{P}(X).$$

C. Sparse Recovery

The recovery of the multichannel iEEG signal from the compressive measurements explicitly employs a multichannel sparsity domain Ψ_{MC}. The underlying neural signals in channels share similar structures. Hence, the transform domain of the multichannel signal is a block-diagonal matrix which presents the sparsity domain of channels along the diagonal and is defined as

$$\Psi_{MC} = I_N \otimes \Psi,$$

where $\Psi \in \mathbb{R}^{k \times d}$ is the sparsity domain of each channel, I_N is the identity matrix of size $N \times N$, and \otimes represents the Kronecker product. The compressive sensing scheme [4], [5] attempts to recover the sparsest solution to X from the measurements Y using the following convex minimization:

$$\min_{X \in \mathbb{R}^{d \times N}} \| \Psi_{MC}^T X_{vec} \|_1 \text{ s.t. } Y = \Phi_{MC} \mathcal{P}(X)$$

where X_{vec} is the vector form of X which includes the concatenation of its columns. The ℓ_1 norm of a vector ξ is defined as $\| \xi \|_1 = \sum_i |\xi_i|$. The measurement consistency in the recovery algorithm $[Y = \Phi_{MC} \mathcal{P}(X)]$ pertains to obtaining a signal X which is in accordance with the measurements Y through the measurement matrix Φ_{MC}, i.e., (6) recovers a signal X which is sparse in the sparsity domain (Ψ_{MC}) and satisfies the measurement consistency constraint.

D. Mixed Norm Recovery

The multichannel neural signals have high inter-channel dependency, as the signals recorded by the adjacent channels are delayed or scaled version of each other, depending on the spatial resolution and pitch of the electrodes which indicates the propagation of neural activity within the brain. The dependent structure of multichannel neural signals suggests the design of a recovery model which exploits the similarity of neural signals. The Gabor coefficients [20] of iEEG signals recorded by adjacent channels in a Gaussian window are shown in Fig. 3(a). Sparse recovery induces coefficient-wise sparsity without considering the inter-channel correlation of the neural signals. The neural recovery model should employ the cross correlations of iEEG signals to improve the reconstruction quality. An appropriate model for multichannel neural signals should highlight the group structure of Gabor coefficients, i.e., the model should lead to a sparsity on the number of active frequencies.
mixed norm of a given vector. In the former, a group of coefficients are discarded or retained together, since the same threshold is applied to the \(\ell_2 \) norm of each group. In the latter, each coefficient is shrunk independently from other elements and the same threshold is applied to each element. Consequently, the \(\ell_1 \) recovery does not model the block structure in the neural signals. However, the \(\ell_{1,2} \) norm respects the group structure of neural signals and imposes sparsity on the group of coefficients rather than each coefficient independently. Thus, the \(\ell_{1,2} \) scheme results in recovery of dense blocks for sparse number of frequencies. Fig. 3 compares the recovered Gabor coefficients of multichannel neural signal employing sparse and joint recovery in a Gabor window, with the Gabor coefficients of the original neural signal. We observe that the recovered Gabor coefficients using \(\ell_{1,2} \) [Fig. 3(c)] yield the same structure as of the original multichannel neural signals [Fig. 3(a)]. Furthermore, the sparse recovery [Fig. 3(b)] does not respect the group structure of neural signals and results in recovery of Gabor coefficients which are sparse and independently spread along different frequencies for each neural channel. This behaviour is explained by the fact that the sparse recovery does not consider the group structure of neural signals. The solution to the multichannel neural recovery using the \(\ell_{1,2} \) mixed norm is obtained by replacing the \(\ell_1 \) norm by the mixed norm as

\[
\| \xi \|_{1,2} = \sum_g \left(\sum_m |\xi_{g,m}|^2 \right)^{1/2}
\]

where \(\xi \) is divided into a set of non-overlapping groups. The elements of \(\xi \) are indexed by a pair \((g,m) \), where \(g \) defines the group number and \(m \) represents the corresponding index inside the group. It is important to differentiate between the \(\ell_{1,2} \) mixed norm and the sparsity inducing \(\ell_1 \) norm. We model the dependency of neural signals using the \(\ell_{1,2} \) mixed norm [21]. The \(\ell_{1,2} \) mixed norm of a given vector \(\xi \) is defined as

\[
\| \xi \|_{1,2} = \sum_g \left(\sum_m |\xi_{g,m}|^2 \right)^{1/2}
\]

where \(\xi \) is divided into a set of non-overlapping groups. The elements of \(\xi \) are indexed by a pair \((g,m) \), where \(g \) defines the group number and \(m \) represents the corresponding index inside the group. It is important to differentiate between the \(\ell_{1,2} \) mixed norm and the sparsity inducing \(\ell_1 \) norm. In the former, a group of coefficients are discarded or retained together, since the same threshold is applied to the \(\ell_2 \) norm of each group. In the latter, each coefficient is shrunk independently from other elements and the same threshold is applied to each element. Consequently, the \(\ell_1 \) recovery does not model the block structure in the neural signals. However, the \(\ell_{1,2} \) norm respects the group structure of neural signals and imposes sparsity on the group of coefficients rather than each coefficient independently. Thus, the \(\ell_{1,2} \) scheme results in recovery of dense blocks for sparse number of frequencies. Fig. 3 compares the recovered Gabor coefficients of multichannel neural signal employing sparse and joint recovery in a Gabor window, with the Gabor coefficients of the original neural signal. We observe that the recovered Gabor coefficients using \(\ell_{1,2} \) [Fig. 3(c)] yield the same structure as of the original multichannel neural signals [Fig. 3(a)]. Furthermore, the sparse recovery [Fig. 3(b)] does not respect the group structure of neural signals and results in recovery of Gabor coefficients which are sparse and independently spread along different frequencies for each neural channel. This behaviour is explained by the fact that the sparse recovery does not consider the group structure of neural signals. The solution to the multichannel neural recovery using the \(\ell_{1,2} \) mixed norm is obtained by replacing the \(\ell_1 \) norm by the mixed norm as

\[
\Psi_{MC} = \arg \min_{\alpha_{MC} \in \mathbb{R}^{d \times N}} \| \alpha_{MC} \|_{1,2} \text{ s.t. } Y = \Phi_{MC} \mathcal{P} (\Psi_{MC} \alpha_{MC}).
\]

III. CIRCUIT IMPLEMENTATION

In order to realize the CS acquisition scheme proposed in Section II, the architecture shown in Fig. 4 is designed and implemented in a 1P6M 0.18 \(\mu m \) CMOS technology. The main focus of this design consists of accommodating a large number of recording units into the available die area, while preserving sufficiently low-noise and low-power performance. Low power consumption and compact area are crucial in high-density implantable recording systems.

A. Recording Channels

The fabricated integrated circuit includes 16 recording channels. Each channel consists of a low-noise amplifier with a band-pass transfer function, an additional low-pass filter to limit the high cut-off frequency, a second gain stage, and a buffered sample-and-hold circuit. The differential outputs of all channels individually connect to the summing stage and randomly accumulate at the output of this stage. The result is then digitized through a single ADC.

A three-stage configuration is used in each channel [22], in order to minimize the total die area and provide the desired amplification and filtering of the input signal.

1) Low-Noise Amplifier: An area-efficient T network-based capacitive feedback amplifier [23] with moderate-sized input capacitors is used as the front-end gain stage \(G_1 \), which provides a mid-band gain of 29.8 dB [Fig. 5(a)]. The mid-band gain of this stage is realized by multiplying two capacitive ratios. This potentially provides a high closed-loop gain in a single stage. Using this topology, the total size of the capacitors is smaller than the size of capacitors in a conventional capacitive feedback topology [24]. Four back-to-back MOS devices biased in sub-threshold region are used to implement the high-value feedback resistors with sufficient linearity for creating a low-frequency high-pass pole [Fig. 4(a)]. The variation on the high-value resistance over the voltage swing across the resistor is 1.5% at 200 mV and remains smaller than 2% up to a voltage swing of 600 mV across the resistor. Owing to the series connection of the high-value resistors in a symmetric combination, the equivalent resistance exhibits symmetric variations around the quiescent point in all process corners. The simulated high-pass cut-off frequency varies in the range of 14–118 Hz, under the worst-case process corner, supply voltage and temperature variations.

The differential mid-band gain of this stage is calculated as

\[
A_M = \frac{C_1}{C_2} \left(\frac{2C_4 + C_2 + C_3}{C_3} \right).
\]

In general, the smaller the input capacitance in the feedback loop is, the larger the ratio of the OTA noise referred to the input of the LNA will be, since the OTA’s input parasitics become comparable to \(C_1 \). To tackle this issue, the additional gain provided by the second capacitive ratio is selected small compared to the first term in (9) to satisfy the low-noise operation as well. In this design, \(C_2 = C_3 = 200 \) fF, \(C_1 = 1.4 \) pF and \(C_4 = 400 \) fF, resulting in \(C_{ tot} = 4 \) pF. The conventional topology [24] requires a total capacitance of 64 \(\times 200 \) fF \(\approx 12.8 \) pF to achieve a similar mid-band gain.

A second benefit of replacing the very large input capacitance by a moderate one is that the larger input impedance provided by a moderate input capacitor reduces the effect of attenuation of cortical signals in the electrode-channel interface.

A folded-cascode OTA with a continuous-time common-mode feedback (CMFB) circuit is implemented in the LNA [Fig. 4(a)]. Through the dc path provided by the large-value feedback resistors, the same CM voltage as \(V_{CM} \) is generated at the input gates of the OTAs used in \(G_1 \) and \(G_2 \). The total bias current of the OTA is 7 \(\mu A \). The simulated passband of the LNA ranges from 28 Hz to 144 kHz. The linearity performance of the LNA is described by the THD metrics which is 0.24% for a 2 mVp-p input signal. This LNA consumes 8.4 \(\mu W \) of power, corresponding to 89% of the total power consumed by the channel.

The ac-coupled architecture provided by the capacitive feedback topology enables the amplifier to reject the large dc offsets (as large as 1–2 V [24]) which are commonly generated in
an electrode-tissue interface. The common centroid layout of the input differential pair in the LNA and the passive components such as input and feedback capacitors results in improved matching and offset performances, which are mainly limited by

Fig. 4. Circuit implementation of the proposed multichannel CS architecture. (a) Individual channels. (b) Variable-gain summing stage, gain stage and 10-bit SAR ADC with attenuated binary-weighted DAC. (c) Multi-output random sequence generator. (d) Timing diagram of the proposed system.
the front-end LNA. The measured input-referred offset of the stand-alone channel is 0.85 μV.

2) Filter, Amplifier and S/H: The commonly used low-bandwidth of interest (less than 2 kHz) for capturing iEEG signals (e.g., for epileptic activity detection) requires additional low-pass filtering after the LNA. Limiting the bandwidth using a low-pass filter stage with minimal power and noise costs is more beneficial to limit the die area per channel than aggressively increasing the C_{LPF} of the LNA. A first-order source-follower based low-pass filter (adapted from [25]) is used which achieves sufficient linearity at a small bias current [Fig. 4(a)]. The DC-gain loss due to the bulk transconductance which is inherent to the source-follower architecture is reduced by a source-to-bulk connection. The internal feedback of the source-follower circuit and processing the signal in voltage domain increases the linearity range of the filter.

The presented filter exhibits a THD of 0.08% (equal to 10–11 bits of linearity) for a filter input signal of 60 mV_{p–p} (or 2 mV_{p–p} at the input of a channel) consuming a bias current of 5.4 nA. The cut-off frequency is 1.9 kHz and is tunable by the current.

A second gain stage [G_{2} in Fig. 4(a)] provides an additional gain of A_{M2} = 13.64 dB using a conventional capacitive feedback architecture. The power consumption of the second gain stage is negligible (0.72 μW) compared to the front-end LNA, thanks to the relaxed noise requirements. Using a folded-cascode OTA architecture, an output voltage swing as large as 200 mV_{p–p} is achieved in the second gain stage. The size of the transistors in this OTA are selected smaller compared to the OTA used in the front-end LNA, thanks to the relaxed noise and matching requirements.

The amplified and band-pass filtered signal of each channel goes through a sample-and-hold (S/H) stage followed by a source-follower buffer to keep the signal constant during the consecutive M measurements (M = N/CR in this case). The S/H circuit is controlled by the signal S/H_{Ch} which is M + 1 times slower than the S/H signal of the ADC and is generated using a single (M + 1)-bit shift register [Fig. 4(b)]. The output common-mode voltages of the LPF and BUF are defined by the gate-source voltage of the PMOS transistors which are located at their input, knowing that the output bias voltage of the preceding stages are defined through the CMFB of G_1 and G_2. The source-to-bulk connected source-follower buffers at the output of each channel exhibit a THD of 0.12%, which equals to 9–10 bits of linearity for a 200 mV_{p–p} input signal. The total power consumption of the LPF, buffer and in-channel biasing circuitry is less than 0.3 μW.

The required settling time to guarantee B-bit performance imposes the following condition at the output of the second gain stage, prior to the S/H:

\[e^{-\frac{1}{2} \left[\frac{f_3}{f_s} \right]^2} < 0.5 \times 2^{-B} \]

for \(B = 8 \) and \(f_s = 4 \) kS/s this condition results in

\[f_{-3dB} = \frac{1}{(2\pi)} \left(\frac{B + 1}{\pi} \right)^{1/2} f_s \approx 1.98 f_s \approx 8 \text{ kHz} \]

in which \(f_{-3dB} \) represents the bandwidth of the circuit when the sampling capacitor is connected. Assuming a sampling capacitor of 0.4 pF, the achieved bandwidth is 55 kHz, consuming a low bias current of 0.6 μA.

B. Randomly Controlled Summing Stage

The sampled signals of N channels of the array connect to the summing stage at the sampling phase (φ_{S1}) which follows the two in-phase events φ_{S1} and φ_{S2}. By applying a proper timing strategy (φ_{S1} comes before φ_{S2} and φ_{S2} before φ_{S3}) as presented in Fig. 4(b) and using bottom-plate sampling, it is possible to substantially reduce the effect of channel charge injection of the switches. The effect of clock feedthrough is reduced by the differential implementation. A variable voltage gain is achieved through the controlling switches in series with the feedback capacitors. Due to the randomized summation at this stage, the programmability of the gain is crucial. The gain stage preceding the ADC provides an additional gain of three to perfectly accommodate the full-scale input range of the ADC. A hybrid two-stage class A/AB topology [28] is used as the OTA in this stage, which provides the desired rail-to-rail output swing.

The operation of the summing stage is as follows. In sampling mode, φ_{S1}, φ_{S2} and φ_{S3} are on, allowing the differential voltage across the two sampling capacitors (C_2) at the output of each channel to track the differential output voltage of that channel. In summation mode (φ_{S1}, φ_{S2} and φ_{S3} are off), the charge stored on the sampling capacitors of those channels with random value equal to one are transferred to the capacitors in the feedback path (C_f). This enables the summation of the sampled values of channels, based on the value of the corresponding random sequence.

A reasonable lower bound for the bandwidth of OTA used in the summing stage can be calculated from (10) which equals 50 kHz at a sampling rate of (M + 1)f_s = 20 kS/s. The stability and speed of the feedback loop is guaranteed for the worst case where all random values are equal to one, while a single feedback capacitor is connected which corresponds to A_{M,INT} = N, for equal unit capacitors and equal inputs.

1) System Resolution: Assuming the worst-case situation in which all N channels of the array are summed together while all controlling random values are equal to one, the following constraints on the signal headroom and noise prior to the ADC will exist:

\[NV_{n, sig} A_M \leq 2V_{DD} \]

\[NV_{n, rms} A_M^2 \leq (2V_{DD})^2 / 12 \cdot 2^{2B_p} \]
where A_M is the total mid-band gain from the input of the channels to the input of the ADC, $V_{in, \text{rms}}$ is the peak-to-peak amplitude of the input signal, $V_{n, \text{rms}}$ is the rms value of the input-referred noise of each channel and N is the number of channels.

Having $V_{in, \text{rms}} = V_{in, \text{sig}} / 2 \sqrt{2}$ for a sinusoidal waveform, results in $B_y \approx B_{\text{sig}} + \log_2 \sqrt{N} - 0.58$. Generalizing this equation to any arbitrary waveform with $V_{in, \text{rms}} - V_{in, \text{sig}} / K$ yields

$$B_y \approx \log_2 \frac{V_{in, \text{sig}}}{V_{in, \text{rms}}} + \log_2 \sqrt{N} - 1.78$$

which is independent of the parameter K. Considering a background neuronal noise of 5–10 μVrms [26] and a typical amplitude of surface cortical signals of up to 1 mV and adding some extra margin, B_{sig} and B_y, are set to 8 and 10 for 16 channels.\(^1\)

The effective compression ratio of the proposed CS topology is then approximated by

$$\text{CR}_{\text{eff}} \approx \frac{NB_{\text{sig}}}{(M + 1)(B_{\text{sig}} + \log_2 \sqrt{N})}.$$

2) Large-Scale Implementation: The imposed requirement on the ADC resolution degrades the power efficiency of the system at large number of channels and sets an upper limit for the maximum number of channels connected to the summing stage prior to the ADC. Thus, the model shown in Fig. 6 is adapted for large arrays. The digital outputs of 16-channel blocks are summed together by a digital accumulator with sufficiently large number of bits. The power and area cost of adding the required number of bits to the resolution of the accumulator is significantly less compared to the cost of increasing the resolution of the ADC. Designing an ADC for target resolutions higher than 10 bits requires additional topological modifications which are commonly achievable by consuming more power. Using this method, the proposed CS concept is still more area- and power-efficient for large arrays than single-channel approaches.

In this model, the limit on the compressed array size (N) is imposed by the acceptable power efficiency of the summing stage and ADC which are sampled at a rate of $(1 + N/C\text{R})f_S$ with f_S being the Nyquist sampling rate. The multichannel system is then divided into sub-blocks of N-channels, with N being the optimum number of channels to be compressed into a single data stream. Each sub-block is encoded to a digital data stream which after reconstruction, generates the signals originated from the channels constituting that sub-block.

3) Random Matrix Generator: In order to guarantee an efficient implementation of compressive sensing, the power and area cost of CS circuits including the measurement matrix generator must be negligible compared to the rest of the integrated circuit. In a single-channel approach, each channel is loaded with m sequences (building the rows of the measurement matrix explained in (1)), whereas in the proposed model, each channel needs to be driven by only one sequence. As shown in (3), the measurement matrix supporting the consecutive M measurements for recovering each sample of individual channel is filled by the corresponding M values of the in-channel sequences. This approach circumvents the need to place a memory to store the elements of the measurement matrix.

As shown in Fig. 4(c), multi-output sequence generation is achieved by XORing the multiple outputs of maximal-length pseudo-random binary sequence (PRBS) generators [29]. For a recording array of 4×4 and a value of M equal to 4 (resulting in $CR = 16/4$), the 16 sequences driving the individual channels are generated by XORing the states of a 4-bit PRBS generator with another 5-bit PRBS generator. As opposed to the single-channel compressing system which has to be physically designed for a specific predefined m and redesigned by varying the compression ratio, the proposed scheme is easily adaptable for different values of M by adjusting the clock frequency.

4) Noise Analysis: Power, area and noise are the three major performance metrics of an implantable system. Ideally, the noise performance of the system is limited by the background extracellular noise and by the noise of the electrodes. In addition to the low-noise amplifier at the front-end of each channel, the noise induced by the switched capacitor summing stage should be minimized. While the effect of flicker noise can be reduced by using large input devices (generally PMOS), the thermal noise induced by the switching circuits can affect the total noise of the system, prior to the ADC. A comprehensive sampled noise analysis based on an approach similar to [30] is presented to give an insight into the appropriate values of the design parameters of the system. As a general noise reduction technique, the input differential pair of the folded-cascode OTA used in the front-end LNA is biased in subthreshold region [31]. This results in a large g_m / I_D of the input transistors and reduces the input-referred noise of the OTA. The mean-square value of the total thermal noise at the output of each channel can be approximated by integrating the PSD of OTA noise at the input [31], shaped by the low-pass transfer function of the loop [see the half-circuit model shown in Fig. 5(b)], and fed into the low-pass filter and second gain stage, resulting in

$$v_{n,\text{out}}^2 \approx \frac{A_{M,\text{tot}}^2}{4T} \left(\frac{4kT}{\kappa g_m} \right)$$

\(^1\)This calculation excludes the rms thermal noise of the electrodes which can be in the order of 10–20 μV [27], depending on the size, material and operating temperature of the electrodes. In reality, this noise further degrades the dynamic range of the input signal and the effective number of bits achievable at the system level.
where k is Boltzmann's constant, T is the absolute temperature, κ is the reciprocal of the subthreshold slope factor, $A_{M,\text{tot}} \approx 1/\beta_1\beta_2$, $1/\beta_1$ is obtained from (9) and $1/\beta_2$ is the mid-band gain of the second gain stage. Assuming $\tau_1 = C_L/\beta_1 g_m$, the settling time constant at the output of the LNA with a load capacitor of C_L and an input transconductance of g_m, and $\tau_2 = C_{\text{LPF}}/g_m, \tau_{\text{LPF}}$ the time constant at the output of the LPF, $\tau_2 > \tau_1$ and (16) yields

\[
\frac{v_{\text{in},\text{out}}^2}{v_{\text{in},\text{in}}^2} \approx \frac{kT}{C_S} \frac{A_{M,\text{tot}}^2 g_m, \tau_{\text{LPF}}}{\kappa g_m C_{\text{LPF}}}. \tag{17}
\]

The equivalent half-circuits of the summing stage during the sampling and integrating phases are shown in Fig. 7. The PSD of the thermal noise generated on the sampling capacitor (C_S) which is due to the switch placed in-series with C_S and during ϕ_{S^3} can be written as [30]

\[
S_v(f) = \frac{4kT R_{\text{on}}}{1 + (2\pi f \tau_0)^2}. \tag{18}
\]

Here, R_{on} is the on resistance of the switch and τ_0 is the time constant of the C_S branch during sampling (ϕ_{S^3}), which is expressed as

\[
\tau_0 \approx C_S \left(\frac{R_{\text{on}}}{2 + g_m R_{\text{on}}} \right). \tag{19}
\]

The corresponding noise integrated from 0 to infinity is equal to $kT/[C_S(1 + 1/[2 + g_m R_{\text{on}}])]$ which summed up to the non-significant noise terms generated by the two switches ϕ_{S^1} and ϕ_{S^2} can be estimated as kT/C_S.

During the second phase (ϕ_{S^3} is open), the equivalent time constant of this circuit can be approximated by $\tau = C_S (R_{\text{on}} + 1/g_m)$. The mean-square value of the switching noise assuming that in the worst case, ϕ_{R_i} is equal to one for $i = 1, \ldots, N$, is calculated as [Fig. 7(b)]

\[
\frac{v_{n,\text{out}}^2}{v_{n,\text{in}}^2} \approx \frac{4kT R_{\text{on}}}{4\tau} = \frac{kT}{C_S} \frac{1}{1 + 1/x}. \tag{20}
\]

The parameter x is introduced as $x = R_{\text{on}} g_m$. The noise power in C_S due to the op-amp when ϕ_{S^3} is open is found as

\[
\frac{v_{n,\text{out}}^2}{v_{n,\text{in}}^2} \approx \frac{4kT/\kappa g_m}{4\tau} = \frac{kT}{\kappa C_S (1 + x)}. \tag{21}
\]

Thus, the total input-referred noise of the differential summing stage can be expressed as

\[
\frac{v_{n,\text{in}}^2}{v_{n,\text{in}}^2} \approx \frac{2kT}{C_S} + \frac{2kT/C_S}{1 + 1/x} + \frac{2kT}{C_S} \frac{4x + 2 + 2/\kappa}{x + 1} = \frac{kT}{\tau g_m} (4x + 2 + 2/\kappa). \tag{22}
\]

referred to the input of each summing branch (or equivalently to the output of each channel). Based on this equation, the noise is minimized for $x \ll 1$. The total noise power calculated in (22) should be smaller than the output noise power of channels calculated by (17) which satisfies the noise requirement prior to the ADC. There is a clear trade-off between the summing stage's noise and the circuit area which is proportional to C_S. However, considering the extra margin assumed in calculating the system resolution based on (14), and accounting for the electrode and background noise, enables letting the noise due to this stage be as large as the noise of channels, keeping in mind that additional noise reduction does not improve the effective number of bits but further degrades the area efficiency of the implantable system. With this assumption, a minimum value of C_S equal to 200 fF is required to guarantee the proper performance of the summing stage. For an optimal design, the maximum permissible value of τ based on (10) can be substituted into $\tau = C_S (1 + x)/g_m$ resulting in the lowest g_m, which can fulfill the noise and bandwidth requirements of this stage. The assumed constraint on x (i.e., $x \ll 1$) determines the minimum size of the switches in this case. For equally-sized capacitors, these switches are selected $(M + 1)$ times larger than the in-channel S/H switches which operate at a lower frequency.

C. Analog-to-Digital Converter

The stringent area and power constraints of the implantable system motivate the compact and energy-efficient implementation of the ADC. Based on system-level requirements, an ADC with 10 bits of resolution and a sampling rate of 20 kS/s translates into a data recorded in each channel with 8 bits of resolution and a sampling rate of 4 kS/s. The SAR ADC is a popular architecture which enables low-power data conversion for medium resolution/speed applications. A binary-weighted capacitive array with attenuation capacitor [Fig. 4(b)] is used which enables the compact implementation of the ADC. The potentially small input capacitance of this array results in relaxed specifications of the stage preceding the ADC, in terms of bandwidth and power consumption.

As shown in the timing diagram of Fig. 4(d), the data sampled from a channel is kept constant during M randomized summations and consecutive digitizations through the ADC. Thanks to the low bandwidth of iEEG signals, the PRBS generator and ADC are clocked at a rate faster than the sampling frequency of the individual channels. This allows the computations to be done

2The typical value of the in-band input-referred noise power due to the LNA is more than 10 times smaller than the electrode noise power for this application.

3The total required capacitance of the attenuated array is $2^{(n/2)-1}$ times smaller than a conventional binary-weighted array where B is the number of bits.
TABLE I
COMPARISON OF THE AFE AND ADC PERFORMANCE WITH PUBLISHED LITERATURE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>[38]</th>
<th>[39]</th>
<th>[37]</th>
<th>[40]</th>
<th>[41]</th>
<th>[42]</th>
<th>[23]</th>
<th>[43]</th>
<th>[44]</th>
<th>This Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology [μm CMOS]</td>
<td>0.35</td>
<td>0.13</td>
<td>0.13</td>
<td>0.18</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.13</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>Bandwidth [Hz]</td>
<td>10-5k</td>
<td>0.023-11.5k</td>
<td>167-6.9k</td>
<td>10-7.2k</td>
<td>1-5k</td>
<td>217-7.8k</td>
<td>1-8.5k</td>
<td>1-5k</td>
<td>0.1-5k</td>
<td>39-1.9k</td>
</tr>
<tr>
<td>Gain [dB]</td>
<td>33</td>
<td>38.3</td>
<td>47.5</td>
<td>39.4</td>
<td>34</td>
<td>45.7</td>
<td>38.1</td>
<td>54-60</td>
<td>54-60</td>
<td>43.8</td>
</tr>
<tr>
<td>Input-Referred Noise [μV rms]</td>
<td>6.08</td>
<td>1.95</td>
<td>3.8</td>
<td>3.5</td>
<td>7</td>
<td>4.43</td>
<td>13.3</td>
<td>5.1</td>
<td>6.5</td>
<td>4.2</td>
</tr>
<tr>
<td>NEF</td>
<td>5.55</td>
<td>2.48</td>
<td>2.16</td>
<td>3.35</td>
<td>4.6</td>
<td>2.16</td>
<td>7.87</td>
<td>4.4</td>
<td>7.2</td>
<td>4.12</td>
</tr>
<tr>
<td>AFE Area [mm²]</td>
<td>0.020</td>
<td>-</td>
<td><0.080</td>
<td>0.062</td>
<td>0.020</td>
<td>-</td>
<td>0.056</td>
<td>0.045</td>
<td><0.090</td>
<td>0.040</td>
</tr>
<tr>
<td>CMRR</td>
<td>60</td>
<td>63</td>
<td>83</td>
<td>70.1</td>
<td>-</td>
<td>88</td>
<td>74</td>
<td>75</td>
<td>75</td>
<td>59.8</td>
</tr>
<tr>
<td>PSRR</td>
<td>-</td>
<td>63</td>
<td>-</td>
<td>63.8</td>
<td>-</td>
<td>40</td>
<td>55</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AFE Power Consumption [μW]</td>
<td>8.4</td>
<td>12.5</td>
<td>1.92</td>
<td>7.92</td>
<td>4.2</td>
<td>1.26</td>
<td>6</td>
<td>8.5</td>
<td>4.5</td>
<td>9.4</td>
</tr>
<tr>
<td>ADC Sampling Frequency [kHz]</td>
<td>111</td>
<td>10-100</td>
<td>22.5</td>
<td>-</td>
<td>-</td>
<td>256</td>
<td>-</td>
<td><100</td>
<td>57</td>
<td>20</td>
</tr>
<tr>
<td>ENOB</td>
<td>6</td>
<td>6.2</td>
<td>7.65</td>
<td>-</td>
<td>-</td>
<td>8.3</td>
<td>-</td>
<td>7.6</td>
<td>7.8</td>
<td>9.2</td>
</tr>
<tr>
<td>INL [LSB]</td>
<td>-</td>
<td>-</td>
<td>-0.45</td>
<td>-</td>
<td>-</td>
<td>1.52</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
<td>-0.76</td>
</tr>
<tr>
<td>DNL [LSB]</td>
<td>-</td>
<td>-0.71</td>
<td>-</td>
<td>-0.89</td>
<td>-</td>
<td>-</td>
<td>0.6</td>
<td>-</td>
<td>-0.37</td>
<td>-</td>
</tr>
<tr>
<td>ADC Power Consumption [μW]</td>
<td>2.77</td>
<td><1</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>3.15</td>
<td>-</td>
<td>1.5</td>
<td>1.8</td>
<td>2.6</td>
</tr>
</tbody>
</table>

IV. EXPERIMENTAL RESULTS

The measured frequency response at the output of G_2 and input-referred noise of the stand-alone channel are shown in Figs. 8 and 9. The high-pass pole is measured at 39 Hz, while the simulated cut-off frequency is 28 Hz. Thus, the HP-pole differs by 40% with respect to the desired value. The discrepancy between the simulated and measured high-pass pole is due to the inaccurate model of the transistors in weak inversion region, and the extra parasitics which affect the total capacitance of the feedback path. A more precise control on the high-pass cut-off frequency can be achieved by adjusting the feedback capacitor and resistor using digital words as shown in [37].

The input-referred noise density at the channel input is $25 \text{nV}/\sqrt{\text{Hz}}$ at 1 kHz. The input-referred noise integrated over the signal bandwidth is $3.2 \mu V_{rms}$, while it increases to $4.2 \mu V_{rms}$ when integrated from 1 Hz to 100 kHz. The Noise Efficiency Factor (NEF) of the analog front-end (including G_1, LPF and G_2) is defined as [32]

$$\text{NEF} = V_{n, rms} \cdot \sqrt{\frac{2I_{out}}{\pi \cdot U_T \cdot 4kT \cdot BW}}. \quad (23)$$

The measured NEF is equal to 4.12 and 3.23 for the noise integration bandwidths of 1 Hz-100 kHz and passband of the signal, respectively.

Table I presents the performance summary of the analog front-end (AFE) and ADC which are compared with published works.
Fig. 10. (a) Microphotograph of the chip and an individual channel’s layout. (b) Power breakdown of a 16-channel compressive sensing array.

TABLE II

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{Channel}</td>
<td>9.4 mW</td>
</tr>
<tr>
<td>$P_{\text{Summing Stage}}$</td>
<td>8.4 mW</td>
</tr>
<tr>
<td>$P_{\text{Gain Stage}}$</td>
<td>4.2 mW</td>
</tr>
<tr>
<td>P_{ADC}</td>
<td>2.6 mW</td>
</tr>
<tr>
<td>P_{PRBS}</td>
<td>0.03 mW</td>
</tr>
<tr>
<td>A_{Channel}</td>
<td>220 μm x 180 μm</td>
</tr>
<tr>
<td>$A_{\text{Summing Stage}}$</td>
<td>290 μm x 150 μm</td>
</tr>
<tr>
<td>$A_{\text{Gain Stage}}$</td>
<td>150 μm x 100 μm</td>
</tr>
<tr>
<td>A_{ADC}</td>
<td>290 μm x 150 μm</td>
</tr>
<tr>
<td>A_{PRBS}</td>
<td>90 μm x 80 μm</td>
</tr>
</tbody>
</table>

The microphotograph of the fabricated chip is shown in Fig. 10(a). The total current consumption of the chip including the buffers and bias generators is 140 μA drawn from a 1.2 V power supply, corresponding to effective current of 8.75 μA per channel. The achieved power density of the system is 7.2 mW/cm², significantly below the safety limit of 80 mW/cm² [33] for an implantable system. The contribution of different blocks of the system to the total power consumption is shown in Fig. 10(b). The area occupation and power consumption of each block of the system are shown in Table II.

In order to demonstrate the effectiveness of the proposed acquisition model, a long segment of multichannel iEEG signal recorded from subdural strip and greed electrodes implanted on the left temporal lobe of a patient with medically refractory epilepsy have been used as the input. The signals are recorded during an invasive pre-surgical evaluation phase to pinpoint the areas of the brain involved in seizure generation and to study the feasibility of a resection surgery. This data includes minutes of pre-ictal, ictal and post-ictal activities sampled at 32 kS/s, using Neuralynx. The signals recorded by 16 adjacent channels of a greed of the electrodes are applied into the proposed CS system.

A. Recovery Performance

Many biological signals can be sparsely represented in either Gabor or wavelet domains [8]. We employ Gabor transform as the sparsity domain of neural signals for multichannel neural recovery based on sparse and mixed norm methods. The recovery SNR of the reconstructed signal (\(\hat{x} \)) with respect to the original signal (\(x \)) is calculated from

$$\text{SNR} = -20 \log_{10} \frac{||x - \hat{x}||_2}{||x||_2}$$

for each recording channel (e.g., SNR\(_{\text{CH1}}\) represents the recovery SNR of first channel). The mean SNR of 16 channels are averaged over 100 blocks of the signal, as shown in Fig. 11. The performance of the circuit is validated for low-voltage fast activities which are shown to be associated with seizure onset. The reconstructed signals versus the original signals corresponding to one block of a single channel data using \(\ell_1 \) and \(\ell_{1,2} \) recovery are shown in Fig. 12(a) and (b). The length of each compression block (\(d \)) is equal to 1024 and is equivalent to 256 msec at a 4 kHz sampling frequency. The digitized data after ADC is used for recovery. As shown in these figures, applying the \(\ell_{1,2} \) recovery on the compressed data produced by the adjacent channels results in an improved recovery performance, compared to the sparse recovery. The averaged SNRs using the \(\ell_1 \) and \(\ell_{1,2} \) recovery are 16.64 and 21.80 dB, respectively. Based on the statistical analysis reported in [34], a minimum SNR of 10.45 dB (corresponding to a PRD of 30%) is acceptable to maintain the diagnostically important data in the recovered signal, e.g., for successful seizure detection. Reducing the number of measurements to \(M = 1 \), i.e., CR = 16 results in average SNR = 13.72 dB, using \(\ell_{1,2} \) recovery. Thus, the system is able to successfully recover low-voltage iEEG signals compressed by a ratio as high as 16. Fig. 13 presents the average reconstruction SNR for sparse and joint recovery.
B. Effect of Circuit Non-Idealities and Non-Adjacent Channels

A second database consisting of multichannel intracranially recorded signals of the slices of a rat somatosensory cortex under bicuculline, which blocks the synaptic inhibition and consequently mimics the epilepsy, is applied to the CS recording system. This signal includes epileptiform burst activity and extracellularly detected spikes. However, the verifiable signals of this database are associated with electrodes randomly located on the array. Consequently, these channels exhibit limited synchronous activity during the seizure, compared to the previous database. This effect is reflected in relatively lower recovery SNR of neural signals presented in Table III. SNR is evaluated for each channel and for the multichannel signal, by comparing \(X_{\text{rec}} \) with the reconstructed multichannel data stream (defined as \(\text{SNR}_T \)).

In order to study the effect of circuit non-idealities (such as quantization and thermal noise) on the recovery performance, for different compression ratios. The achieved compression ratios vary within the range of 16/15 up to 16, corresponding to \(\text{CR} = 16/M \), where \(M \) is an integer number between 1 and 15.

As confirmed by the average SNR, the system is potentially able to recover the signal over the entire recording period, with some tolerable loss (i.e., SNR > 10.45 dB). However, the amplitude and frequency of the recorded signals can significantly vary, depending on the distance between the microelectrodes and their surface area [35]. The amplitude of the very high frequency oscillations (250–500) recorded using macroelectrodes [36] is much smaller (5–30 versus 100–1250 \(\mu \text{V} \)) than human fast ripples recorded from smaller microelectrodes [35]. The amplitude of the fast ripples recorded by the high-density array will expectedly fall within the range of tens-hundreds of microvolts, which is efficiently recovered at the output of the system, as shown in Fig. 12.

The required time for the reconstruction of the 1024-length epochs of the multichannel signal is 1.12 second per channel, using a 2.66 GHz processor with 4 GB of RAM. To achieve a real-time performance, the speed of the reconstruction could be improved by hardware implementation of the algorithm on FPGA and using custom acceleration techniques.

C. Comparison and Future Work

Table IV summarizes the performance of the system and presents a comparison with published works. In this table, compression power and area refer to the extra power consumption and area usage of the signal digitization, compression and thresholding blocks which are commonly added to the total power consumption and area of the analog front-end. The authors in [8] apply compressive sensing on a single-channel pre-recorded EEG data by acquiring measurements in the digital domain. The power saving is significant while the area overhead is not addressed. Due to the youthfulness of the field and the lack of similar electronic architectures that use CS in brain implants, we have compared our results with a Discrete Wavelet Transform (DWT)-based design [49] for intra-cortical implants and several additional systems based on spike/AP detection [37], [47], [48], [50] for implantable neural recording.
applications. While the design in [49] mainly addresses the area-efficiency of the implantable system and proposes an architecture that sequentially evaluates the DWT of the multi-channel data in the digital domain, our results outperform this approach in terms of area and power efficiency. In addition, high compression ratios are achieved by means of the following thresholding and redundancy removal stages, while the DWT by itself does not result in any data compression. Thresholding, however, results in a significant loss of the signal in non-spiking regions while a more precise recovery is achieved at much lower compression ratios (e.g., at CR = 2 in [49]). The chip includes several memory registers containing threshold values of different channels and additional blocks such as controllers, address generator and buffer units which degrade the power and area efficiency of the system. Some of the reported spike detector systems achieve significant data reduction [37], [47] with negligible overhead in terms of compression power and area [37]. However, the patient-specific threshold setting in such systems can result in design complexity in a real neural interface in addition to the loss of signal in non-spiking regions. Furthermore, the transmitted signal may not be acceptable to the clinicians who usually prefer to have access to the entire iEEG data, even though somewhat lossy, for a thorough neuro-logical examination.

As a final remark, the method presented in this paper can also be implemented in a digital framework, similar to the concept presented in [8], but in a multichannel fashion. By using an ADC per channel and applying the random controlling signals to the digital outputs of channels, which pass through a single digital accumulator block, the full array will be encoded into a digital compressed data. Consequently, any possible advantage of applying CS in the digital domain as expressed in [8] can be exploited in a more area-efficient approach, compared to applying CS per channel. However, the system implemented in this paper benefits from using a single ADC per array which results in a small effective area per channel.

As an alternative approach to the proposed method, implementing an intricate ADC which performs the randomized summation of the channels’ outputs will eliminate the summing stage and improve the area efficiency of the multichannel compressive sensing system. Further comparison and characterization of the proposed approaches is required to achieve an optimal model for multichannel signal compression.

V. CONCLUSION

A new multichannel architecture for compressive recording of cortical signals at the surface of the cortex is proposed. In addition to the area efficiency, the proposed method is easily adaptable to different compression ratios, depending on the sparsity of the input signals. The power efficiency resulting from the compressive sensing methodology in addition to the minimal area cost, make this approach highly relevant for power- and area-constrained multichannel sparse signal acquisition. This approach can be investigated in other applications than neural recording, which require data recording from multiple nodes. Extensive system-level analysis and simulations confirm the relevance and efficiency of the system for high-density recording applications, compared to alternative compression methods.

ACKNOWLEDGMENT

The entire signal processing analysis of this work is devised by the signal processing laboratory. The authors wish to thank Dr. K. Schindler and Mr. M. Fuchs for providing the intracranial EEG signals.

REFERENCES

Maha Shoaran (S’11) received the B.Sc. degree in electrical engineering, electronics, and the M.Sc. degree in microelectronics, IC design, from the Sharif University of Technology, Tehran, Iran, in 2008 and 2010, respectively.

In 2011, she joined the Microelectronic Systems Laboratory of the Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, as a Ph.D. student. She has worked on system and circuit design for biomedical applications, the implantable devices for cardiovascular diseases, and brain machine interfaces. Her main research interest is low-power IC design with an emphasis on biomedical applications, innovative system design towards diagnosis, and treatment of neurological disorders and technology-oriented neuroscience.
Mahdad Hosseini Kamal (S’10) received the B.Sc. degree in electrical engineering, communications, from the K. N. Toosi University of Technology, Tehran, Iran, and the M.Sc. degree in communication systems from Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, in 2007 and 2010, respectively.

In 2010, he joined the Signal Processing Laboratory at EPFL as a Doctoral Assistant, where he is currently working toward the Ph.D. degree. His main research interests include inverse problems, compressed sensing, and biomedical signal processing.

Claudio Pollo is a member of the senior staff (Leitenderarzt) and a board certified neurosurgeon and leader of the stereotactic, functional and epilepsy surgery program in the Neurosurgical Department of University Hospital, Inselspital, Bern (Head: Prof. A. Raabe).

He previously was trained predominantly in the Neurosurgery Department of the Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne (Chair: Prof. J. G. Villemure), Switzerland. He also performed a research fellowship dedicated to deep brain stimulation (DBS) in Grenoble, France (Chair: Prof. A. L. Benabid). In 2004, he performed the postgraduate diploma in biomedical engineering delivered by the Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland. He, as well as other members of the interdisciplinary team of the epilepsy surgery and DBS surgery program in Bern, and previously in the Lausanne-Geneva area, have presented and authored clinical and experimental studies focused on epilepsy surgery and clinical results in international congresses and journals. He is involved in different scientific projects financially sustained by the Swiss National Foundation (SNF) or Swiss Committee for Technology and Innovation (CTI), and dedicated to epilepsy surgery as well as DBS. He is author or coauthor of more than 50 original papers or book chapters. He has cofounded two startups involved in technology transfer and holds several patents.

Pierre Vandergheynst received the M.S. degree in physics and the Ph.D. degree in mathematical physics from the Université Catholique de Louvain, Louvain-la-Neuve, Belgium, in 1995 and 1998, respectively. From 1998 to 2001, he was a Postdoctoral Researcher with the Signal Processing Laboratory, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland. He was Assistant Professor at EPFL (2002–2007), where he is now an Associate Professor. His research focuses on harmonic analysis, sparse approximations and mathematical image processing with applications to higher dimensional, complex data processing. He was co-Editor-in-Chief of Signal Processing (2002–2006) and Associate Editor of the IEEE TRANSACTIONS ON SIGNAL PROCESSING (2007–2011), the flagship journal of the signal processing community. He is the author or coauthor of more than 70 journal papers, one monograph and several book chapters. He has received two IEEE best paper awards.

Dr. Vandergheynst is a laureate of the Apple 2007 ARTS award and of the 2009–2010 De Boelpaepe prize of the Royal Academy of Sciences of Belgium. He has been on the Technical Committee of various conferences, serves on the steering committee of the SPARS workshop, and was co-General Chairman of the EUSIPCO 2008 conference.

Alexandre Schmid (S’98–M’04) received the M.Sc. degree in microengineering and the Ph.D. degree in electrical engineering from the Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, in 1994 and 2000, respectively.

He has been with EPFL since 1994, working in the Integrated Systems Laboratory as a Research and Teaching Assistant, and at Electronics Laboratories as a Postdoctoral Fellow. In 2002, he joined Microelectronic Systems Laboratory as a Senior Research Associate, where he has been conducting research in the fields of bioelectronic interfaces, non-conventional signal processing and neuromorphic hardware, and reliability of nanoelectronic devices. He also teaches in the Microengineering and Electrical Engineering Departments at EPFL. Since 2011, he has been a “Maître d’Enseignement et de Recherche” (MER) faculty member at EPFL. He is coauthor and coeditor of three books, and more than 100 articles published in journals and conferences.

Dr. Schmid served as the General Chair of the Fourth International Conference on Nano-Networks in 2009, and has served as an Associate Editor of the IEICE Electronics Express since 2009.